

ADAC perspective on HEMS operation and training

Thomas Gassmann Director Business Development & Sales

Agenda

AHA-Presentation\Airbus HEMS Symposium - Sao Paulo

Introduction:

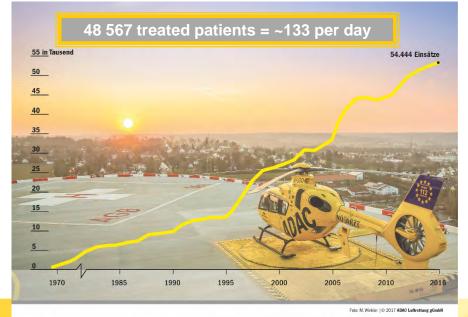
Thomas GASSMANN Director Business Development & Sales ADAC HEMS Academy I Germany

- started my career in aviation in a glider at the age of 14
- joined the German Army Aviation in 1979
- officer and helicopter pilot in several positions from line pilot, technical flight test pilot, safety officer to dept. squadron leader.
- studied economics with specialization in organization and IT-systems.
- left the Armed forces after 13 years of service in 1992 to gain more experience in economics and management consulting.
- 1999 till 2011 developing of the HEMS system in the Netherlands as HEMS pilot and base manager, responsible for the greater Rotterdam Area, including one of the world biggest harbour's.
- responsible for several projects from design and introduction of a new fleet of EC135 helicopters into a running HEMS operation to the integration of NVIS systems. All rescue stations in the Netherlands are operating now 24/7 with NVG s.
- in September 2011 appointed as Director Business Development & Sales and accountable manager at the ADAC HEMS Academy in Sankt Augustin / Germany.
- Member of the Royal Aeronautical Society; Master degree in economics; CPL(H) with more than 3500 flight hours.

Introduction: ADAC and ADAC Air Rescue

ADAC e.V.: Our Motherorganisation

- German Automobile Club with > 19 Mio Members
- ➢ Founder of the German Air Ambulance System in 1970
- ➤ Key Competences: Roadside Rescue, Consumer Protection, Air Ambulance


HEMS Academy

3

Introduction: ADAC and ADAC Air Rescue

ADAC Luftrettung (Airrescue)

- ➢ 37 Rescue Stations (4 with rescue hoist, 4 24/7)
- 55 Helicopters: EC135, BK 117, EC145 all BK117 and EC145 will be replaced by H145 (14, already 11 in service)
- ➤ 400 Full Time Employees including 160 Pilots
- In cooperation with hospitals and help organizations: 250 Hems Crew Members, 680 Doctors
- More than 54.000 Missions / 27.000 FH a year (2016)

ADAC Stützpunkte der Luftrettung Niebüll Rendsburg Greifswald Sibli HRZO Güstro REUR Hamburg Sanderbusch Neustrelitz Groningen Perleber Uelzen ngermü Berlin Magdeburg Wolfenbüttel Bielefeld Senftenber Lünen Göttingen Nordhausen Duisburg Leipzig RTO Ha Bautzen Dresden Siegen Gie Würselen ad Berka Zwickau Reichelshei ittlich Bayreut Ochsenfur Ludwigshafen Nürnberg Dinkelsbühl Saarbrücken Regensburg Stuttgart Karlsruh Straubing Ingolstadt HR1 Suber Villingen-Schwenning Traunsteir Kempten riedrichs DRF Luftral

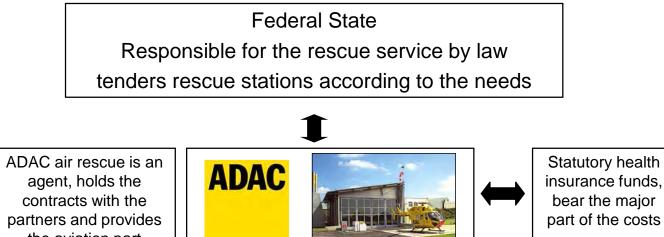
A successful and safe HEMS operation is based on many components

Federal states Rescue system

EASA Aviation regulations

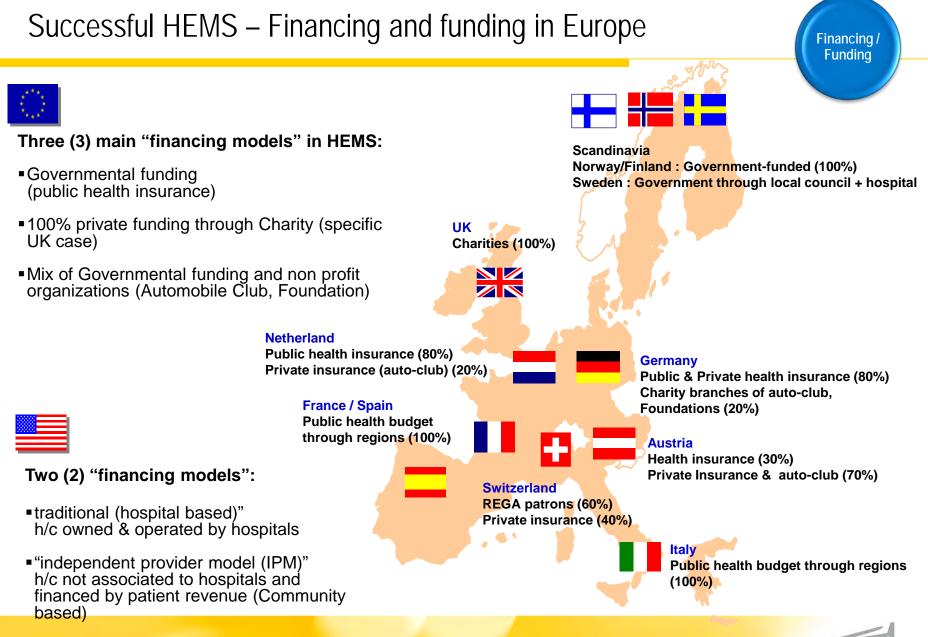
State Medical regulations

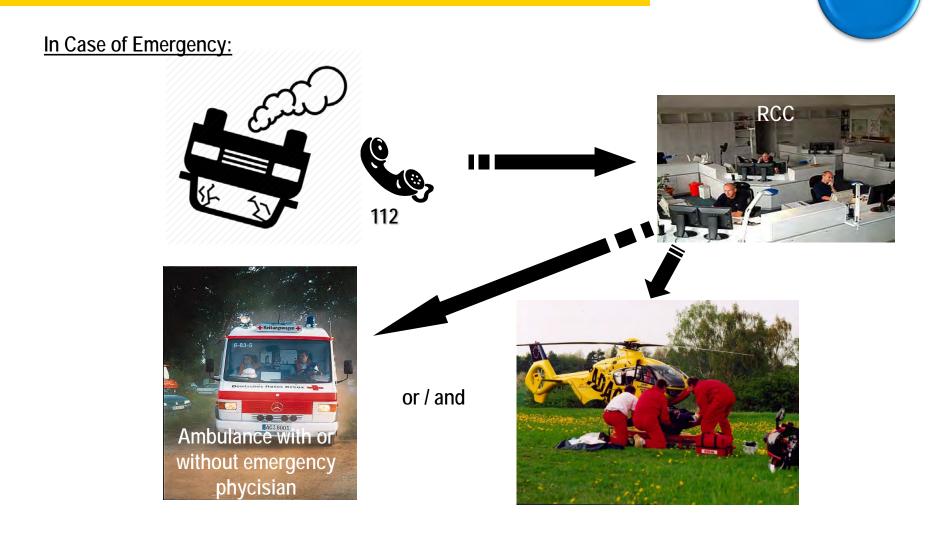
Regulations


Rescue system is part of public health system HEMS is Commercial Air Transport regulated under EASA HEMS in Germany also includes the medical responsibility

AHA-Presentation\Airbus HEMS Symposium - Sao Paulo

Successful HEMS – legal regulations - Partnership


Regulations

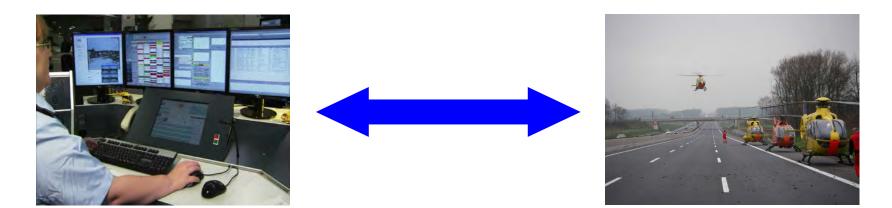


AHA-Presentation\Airbus HEMS Symposium - Sao Paulo

Successful HEMS: Mission Coordination

Successful HEMS: Mission Coordination

- The mission data are obtained via the radio and via digitally received coordinates (direct to the helicopter)
- 2 minutes after alarming, the rescue helicopter is ready to take off
- The rescue helicopter can reach any site within its 70 km radius around the station within 15-17 minutes
- For secondary missions, the lead time is approximately 10 minutes (15-30 minutes at night)


RescueTrack®

- Improved deployment of helicopters.
- Ensuring and optimizing of medical care for the population.
- Reduction of empty flights to increase utilization efficiency.
- Rapid location determination by control centers and flight operations management in case of an incident.

Successful HEMS: Mission Coordination

Close coordination between helicopter crew and control center

- > injury patterns
- required departments of the clinic
- bed capacity
- weather conditions

Successful HEMS: Mission Coordination - Limitations

Poor weather conditions such as:

- > fog
- > storm
- danger of freezing
- nocturnal landings in unknown terrain

2 Pi	2 Pilots 1 Pilot							
Day								
Cloud base	Visibility	Cloud base	Visibility					
500 ft and above	min. 800 Meter	500 ft and above	min. 800 Meter					
499 – 400 ft	1000 Meter	499 – 400 ft	2000 Meter					
399 – 300 ft	2000 Meter	399 – 300 ft	3000 Meter					
	Night							
Cloud base	Visibility	Cloud base	Visibility					
1500 ft	5000 Meter	1500 ft	5000 Meter					

Successful HEMS – Flight Operation

Morning duties:

- at least 30 minutes before start of duty
- Check helicopter, NOTAMS and weather conditions
- Control medical equipment
- Roll out helicopter and prepare for quick start: Take-off within 2 minutes after the call
- Team briefing on weather, NOTAMS, extraordinarily, helicopter conditions and malfunctions,
- everybody happy and healthy?

Mission:

- Within 2 minutes in the air after dispatch
- Pilots starts helicopter (no idea where to go, what kind of accident)
- HCM does navigational preparation digitally
- Doctor requests detailed medical info

Flight operation

Enroute

- HCM supports with procedures, navigation and radio communication, esp with dispatch and hospital
- Everybody happy, no pressure, safety first, safety culture, just culture
- Landing zone normally 2D
- CAT A procedures during landing and take off
- Within a circle of 300 m you find in every city a landing spot, pickup of Med crew by police, bike etc.

On scene

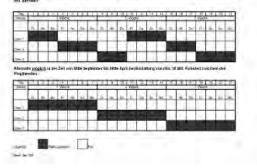
- Crew protection by pilot, helping hand if needed, when helicopter is safe
- HCM supports doctor, holds contact to dispatch and hospital

Transport of patient

- By helicopter: procedure
- By ambulance: doctor is joining the patient, HCM and pilot go for the pickup to make the team complete and mission ready again
- Mission times depend
- Some stations fly 10 missions a day (only daytime period)

Reporting:

- Digital system called LIKS - Includes pilots and medical reporting



Flight operation

Successful HEMS – Flight Operation – Flight time limitations

- Maximum duty time per day (on 4 days in a row): 15:30 h
- Minimum Rest period after this duty period: 48 h
- Before every duty period: resttime min 24 h
- Average working days per year: 160 days
 (2000 h contract)

-		December 2016 >	4						_												_	0
🚨 25 25 🔍 P 🖇	1 m 🛃	78 ⇒ <i>∥</i> 1	1 15	5-14	6		3	- 42		4							vall		10	Dienste &	Arbeitsplä	kze
	Do 1	Fr 2	Sa 3	So 4	Mo 5	D/ 6	16. 7	Do B	Fr 9	2.6 10	50 11	Mo 12	Di 13	Mi 14	Do 15	Fr 16	Sa 17	50 18		Sel	Abre.	1
Abweichunger	DR BRF	DR BRF	TO	10	DR	DR	DR	DR	DF	10	10	DR	BLF DR	RLF	RLF	DF OTB	10	01		178h38	22h43	
Abweichunger Abweichunger	B ANR 28PR ABR	B ANR.23PR,ABR	8	8	В	•	10	TO	77PB	OT	TO	77991	77PB	7799	77PR 01	77998 01	10	DT	-	17563	-53h17	1
Abweichunger	BRF	BRF	OT	01 268T	2681	2681	2681	2681	268 T	2681	2681 07	UG	US	UG	UG	UG	UG	UG		17563	64h53	
omba, Marcus Abweichunger Arbeitszeit	1999	19PR	19PR	DIS	ANR	0P5	015			DT	10						0T	OT		156h32	-78h35	
Abweichunger	31PR	31PR	31PR	31PR	10	TÚ	01	31.PR	31PR	3(PR)	31PR	31.PR	31PR	31PR	10	U	U.	U		175h53	13h29	
Albeitszeit ade, Stephan Abweichunger Arbeitszeit	BRF	BRF	OT	10	OT DR	01	TO	OT	10	TO	TO	01	TO	OT	01	οr	07	OT	AN	178638	-751+42	
Arbeitszeit Abweichunger Abweitszeit	UG	UG	OT	TO	0T	07	TO	то	10	OT	70	WBP	WBP	OP7	WEP	WBP	10	2681	-	175453	3h12	
ravi, Daniel Abiveichunger	40PR	40PR	OT	10	40PR	4099	40PR	40PR	40PR	40PR	40PR	OT STL	UG	UG	UG	UG	UG	IJĢ	E	175+53	32N06	
Arbeitsseit inkmann, Dirk Abweichunger	BRF	BRF	24PFI	24PR	24PR	24PR	τO	то	10	то	στ	0P7	÷.,	24PR	24PR	24PR	т	от		156h32	-501/50	
Arbeitszeit	e.	UE .									-					1		-	3	4	112	× .
yp Qual r		2	30	4	5	6	7	8	9	10	11	12	1 13	14	15	1 16	17	18	T	19	20	_

Flight operation

Successful HEMS – Flight Operation: Crew compositon

Rescue Station: Crew composition

- 3 Station-pilots
- ➢ 5-8 TC HEMS
- > up to 15 emergency physicians

Mission ready:

- from sunrise / earliest 07:00 a.m.
- till sunset

Crew composition

Successful HEMS – Flight Operation: Crew composition

Intensive care 24 h station: crew composition

- 8 Station-pilots at night the ITH (intensive care helicopter) is manned with 2 pilots
- 7-12 TC HEMS
- Up to 25 emergency physicians

Mission ready:

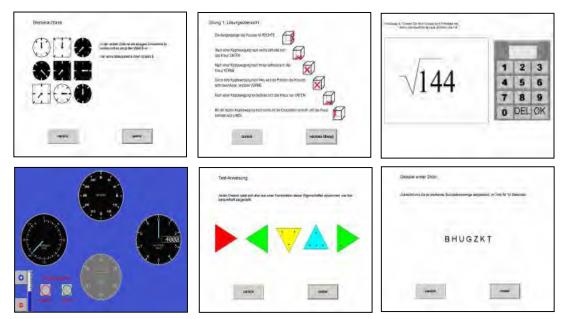
- > 24 h for secundary transport missions
- > Primary rescue form sunrise to sunset

Crew composition

Successful HEMS – Flight Operation: Crew composition - Pilot

Prerequisites for a HEMS pilots @ ADAC Air Rescue

ATPL(H) oder CPL(H)


- 1.000 flight hours PIC for commander or 500 flight hours PIC for pilot (Co Pilot Status) similar environment (Army, Police)
- > Minimum of 500 flight hours in HEMS missions for reaching commander status
- Minimum of 20 flight hours at night
- DLR Test

Successful HEMS – Flight Operation: Crew composition - Pilot

DLR (German Research Center for Airspace and Space) Assessment:

- > On order of ADAC airrescue an proffessional psychological assessment takes place.
- > Characteristics under investigation:
 - Mathematics
 - Logical thinking
 - Technical understanding
 - Memory visual & acoustic
 - Attention
 - Concentration
 - Spatial Orientation
 - Spatial visualization
 - Psychomotoric capacities
 - Multitasking
 - Personality

Crew composition

Successful HEMS – Flight Operation: Crew composition - Pilot

Trainingschedule after acceptance:

- > Dangerous goods training
- Safety and security
- Aeromedical Crew Resource Management (ACRM)
- Flight training (Type Rating)
- Work safety training
- Trainig on emergency and safety equipment
- Initial Briefing / Supervision-time
- > OPC & TRPC (2 checkflights in the SIM every year)
- Line check on the rescue station
- Yearly Recurrent Training: all helicopter systems are covered within 3 years

"The best safety device in any aircraft is welltrained crew!"

Crew composition

Successful HEMS – Flight Operation: Crew composition – HEMS TC

Crew composition

Prerequistes and requirements of the TC HEMS:

- Completed training as rescue assistant
- At least three years' professional experience as rescue assistant
- Completion of the HEMS crew member course
 - > Internship on the station before thecourse
 - 10days course on helicopter related topis (navigation, communication, CRM, technical asprects of the helicopter, use of checklists, weather, etc. including flights in the simulator
 - Practical training on the rescue station with a kinimum of 10 missions under supervision

Successful HEMS – Flight Operation: Crew composition - Doctor

Crew composition

Prerequisites and requirements for emergency physicians:

- Medical team members are chosen via an standardized assessment in combination with evaluation on social skills during some practical days on the rescue station
- Specialist status (Anesthesiologist, Emergency physician, Internal specialist, Surgeon)
- Rescue service resp. additional emergency medicine diploma
- Emergency physicians employed at the ITH also have to have the intensive transport course according to the regulations (DIVI)
- Basic Helicopter course:
 - Basics of Air rescue, Basics of the helicopter, flight safety aspects, Hygiene and transport of contagious patients, Documentation and quality management, Human factors and teamwork
 - Practical training on the rescue station with evaluation and first flights under supervision
- the official status of the doctor onboard = PAX

Medical

Primary medical care (PV)

doctor is quickly transported by helicopter to the patient for treatment; afterwards a ground ambulance transports the patient to the hospital

Primary mission (PT)

patient receives medical care by the HEMS doctor and smoothly transported by helicopter to the nearest suitable hospital

Secondary mission (SE)

medical indicated transfer of a patient from one hospital to another (= interhospital transfer); so-called intensive care transport if the patient has to be intensively monitored

Other mission (SO)

search flights, transport of organs or blood as well as missions in case of large catastrophes

Successful HEMS - Maintenance

Maintenance

Maintenance by ADAC Luftfahrtechnik GmbH with main facility in Bonn-Hangelar and two subsidiaries in Landshut und Halle-Oppin.

- > Quick accessibility of all rescue stations
- 24 h standby service at all locations, rapid response units
- 100 subsidiary of ADAC
- > Airbus Helicopters Service Centre
- External customers welcome

Successful HEMS - Infrastructure for HEMS operations

- Ideal location for helicopters : HOSPITAL with trauma center
- > Infrastructure:

hangar, refueling point, electrical platform, adequate off-duty and recreation rooms for the crew

- Crew concept: doctor and HEMS paramedic are equal teammembers
- Take-off within 2 minutes after alert
- Radius of operation: up to 70 km (primary) up to 500 km (secondary)

Infrastructure / Equipment

The Fleet

Infrastructure / Equipment

AHA-Presentation\Airbus HEMS Symposium - Sao Paulo

Infrastructure / Equipment

Туре	Weight MTOW (in kg)	Mission Speed (knots)	Mission endurance (time/distance)	consumption (liters / hour)
EC 135 🦉	3.000 (2.980)	130 kts	1:30 h / 360 km	ca. 230 I
BK 117 B2 🍻 🕂	3.350	125 kts	1:00 h / 230 km	ca. 265 l
BK 117 C2	3.585	125 kts	1:00 h / 230 km	ca. 290 l
BK 117 D2	3.650	130 kts	1:45 h / 420 km	ca. 330 l

The right fleet for the right mission

ADAC Air Rescue = 100% Airbus fleet:

> Safety issues:

- fenestron technology
- high main rotor
- size and weight (downwash)
- OTW-view
- Helionix cockpit / 4-axis ATP
- Right size for the mission (Primary & interhospital)
- Reliable technology in a mature state
- Maintenance costs (Weight/maintenance cost ratio)
- Spare part supply (365/24-7 operation)
- > Training advantages
- > Noise
- etc.

ADAC-Luftrettung GmbH is investing in the exchange of the BK 117 fleet into the new, more powerful D2 fleet around more than 130 million euros in the next few years

Infrastructure / Equipment

HEMS Academy – Flight Training Beyond Limits

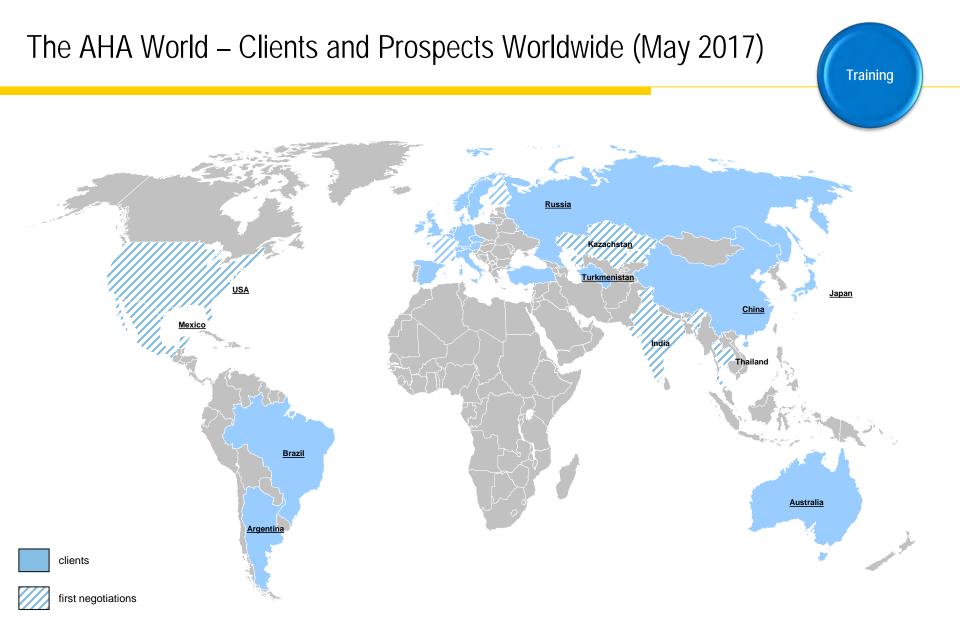
The Academy: Integrated training for pilots, doctors and paramedics in simulated scenarios - a worldwide unique concept.

- Available for all EC135 and EC145C2 operators (air rescue law enforcement, Off-Shore, executive organizations etc.) Wet and Dry lease
- Building started in September 2008
 Open since summer 2009 (medical) / 2011 (flight simulation)

Full-Flight-Simulators:

- EC135 EFIS Level A
- EC145C2 / EC135 EFIS Level A
 - These two simulators are additionally certified by
 - the Argentinian Civil Aviation Authority as Level C
 - the Brazilian ANAC as Level A
 - the Russian Civil Aviation Authority as Level D
- H145 (BK117D2) Level D

(expected June 2017, with EASA and FAA Certification)



General thoughts on training

Training

Training = $\in /$ \$

Intervention Recommendations (IR)

Flight Operations / SMS / Culture Training / Instructional Regulatory / Standards / Guidelines

> Advantages of Simulators (FSTDs) in Helicopter Flight Training

Training

With modern helicopters what items can I (usefully) train in the real aircraft?

Caution indications

Review of EC145 (BK 117 C-2) Flight Manual Emergency and Malfunction Procedures Warning

cations	

Flight manual reference	Reference	Description	Malfunction name	Malfunction description / comment	can be trained usefully in a real A/C
3.2.1					
BAT TEMP warning	FLM BK 117 C-2, 3.2.1	Battery over temperature (above 70 deg C)	BAT TEMP warning	Malfunction will cause warning indications only	no
ENG 1 FAIL warning ENG 2 FAIL warning	FLM BK 117 C-2, 3.2.1	Engine 1 or 2 N1 below threshold	See ref 3.4.1 - 3.4.6	Can also be caused by system effects e.g. fuel starvation	no
FIRE (1)	FLM BK 117 C-2, 3.2.1	Fire in engine 1 compartment	Engine 1 fire	Malfunction will cause warning indications only	no
FIRE (2)	FLM BK 117 C-2, 3.2.1	Fire in engine 2 compartment	Engine 2 fire	Malfunction will cause warning indications only	no
LOW FUEL 1 LOW FUEL 2	FLM BK 117 C-2, 3.2.1	engine 1 or 2 supply tank qty below 24 kg	none	System effects	maybe
ROTOR RPM	FLM BK 117 C-2, 3.2.1 & FLM BK 117 C-2, 2.1	NR high or low	none	System effects	no
		95% or less		steady light	no
		106% or above		flashing light	no
		110% or above		flashing light	no
XMSN OIL PRESS	FLM BK 117 C-2, 3.2.1	XMSN oil pressure <= 1bar	XMSN OIL PRESS 1 warning	Malfunction will cause warning indications only	no
			XMSN OIL PRESS 2 warning	Malfunction will cause warning indications only	no
			XMSN OIL PRESS 1 decrease	Malfunction will force transmission oil indication below minimum over 3 min. System effects limited to	no
			XMSN OIL PRESS 2 decrease	indications only.	no

Flight manual reference		Description	Malfunction name	Malfunction description	
3.2.1 MASTER (flashing)	FLM BK 117 C-2, 3.2.2	a new caution is being displayed	none	System effect	maybe
3.2.2	FLM BK 117 C-2, 3.2.3				
AVIO OVHT	FLM BK 117 C-2, 3.2.3	Normal operating temperature of COM/NAV, FCDS or AFCS exceeded	AVIO_OVHT caution	Malfunction will cause caution indications only	no
BAT DISCH	FLM BK 117 C-2, 3.2.3	DC power is being supplied by battery only	none	System effect	maybe
BLEED AIR	FLM BK 117 C-2, 3.2.3	bleed air valve and mixing valve remain open after shutting off bleed air heating	Bleed air valve open	Malfunction will cause bleed air valve to remain open even if requested to close. Engine performance may be degraded as a result.	no
BUSTIE OPN (1)	FLM BK 117 C-2, 3.2.3	electrical systems separated	Bus tie 1 open	Malfunction will inhibit bus tie 1 function. May also occur during normal system operation.	maybe
BUSTIE OPN (2)	FLM BK 117 C-2, 3.2.3	electrical systems separated	Bus tie 2 open	Malfunction will inhibit bus tie 2 function. May also occur during normal system operation.	maybe
CAD FAN	FLM BK 117 C-2, 3.2.3	CAD fan failure has been detected during external test	CAD FAN caution	Malfunction will cause caution indications only	no
CAU DEGR on CAD on VEMD	FLM BK 117 C-2, 3.2.3	both VEMD lanes inoperative CAD inoperative	see ref 3.3.1, 3.3.2 see ref 3.3.3	Malfunctions will cause: Both VEMD lanes to fail - no VEMD indications; CAD to fail - no cautions are displayed.	no
CPDS OVHT	FLM BK 117 C-2, 3.2.3	instrument panel overheat	CPDS OVHT caution	Malfunction will cause caution indications only	no
DOORS	FLM BK 117 C-2, 3.2.3	cockpit, cabin sliding or clamshell door open	DOORS caution	Malfunction will cause caution indications only	maybe
ENG CHIP (1)	FLM BK 117 C-2, 3.2.3	Metal particles detected in engine 1 oil	ENG CHIP (FB effective) 1	Malfunction will cause caution indications only	no
ENG CHIP (1)	FLM BK 117 C-2, 3.2.3	Metal particles detected in engine 1	ENG CHIP (FB ineffective) 1	Malfunction will cause caution indications	no

only

Training

Helicopter Technology Improvements over the past few years

Then (ALII)

Now (H145)

Training on automation and flight path management is essential!

(NOT) our Simulator / Training device, but...

Training possibilities

Training

Aeronautical, i.e.

- Wet and Dry Lease
- EC 135 / EC 145C2 Type Rating
- EC 135 / EC 145C2 Check-Flights (OPC/LPC)
- Instrument Rating (IR)
- NVG Training
- CAT A Training
- Missions specific Training (HEMS, OFF-Shore, etc.)
- MCC Multi Crew Cockpit Training
- ➢ CRM Training
- ► Etc.

H145 (BK117D2) starting Q2/2017

Combined Training: Aeronautical + Medical

- ACRM (Aeronautical Crew Resource Management)
- ACRM Trainer Assessment
- TCM (Technical Crew Member) Initial
- TCM Refresher
- etc.

Medical, i.e.

- MTRM Medical Team Resource Management Training
- Intensive Care Transport Training
- DIVI Children Emergency Training
- MPG (Medical Product Law) Training

Not for third parties at the moment

- IIIIIai anu renesnet
- Etc.

Why flight simulation?

- Training of critical scenarios, which cannot be demonstrated or are too dangerous to fly in a real aircraft
- Independent from weather and time
- "Real" simulation of meteorological conditions, as e.g. IMC
- Training "around the clock" possible
- No fuel consumption, no noise environmental friendly Carbon dioxide reduction till now: > 10.0000.000 kg
- Reduction of Maintenance Costs
- No waste of flight time to practice sites: the simulator can easily be placed everywhere. There is a large number of operating scenarios, airfields confined areas, helidecks, etc.
- Checking and verification of new procedures in a safe environment
- **Exact cockpit replicant** switches are where they should be
- Training in the SIM is highly recommended by the IHEST and NTSB

Due to the high degree of realism the check flights and all hours flown in a full flight simulator are accepted by the national aviation authorities as real flight hours for the extension of pilot licences.

Training under mission specific circumstances: Mountainous Terrain

Training under mission specific circumstances : i.e. HEMS

Training under mission specific circumstances : i.e. Offshore

Training under mission specific circumstances : i.e. Day and Night

The future has just begun...

Full Flight Simulator Level D H145 - Roadmap

AHA-Presentation\Airbus HEMS Symposium - Sao Paulo

Courtesy Reiser Simulation & Training

Medical Training

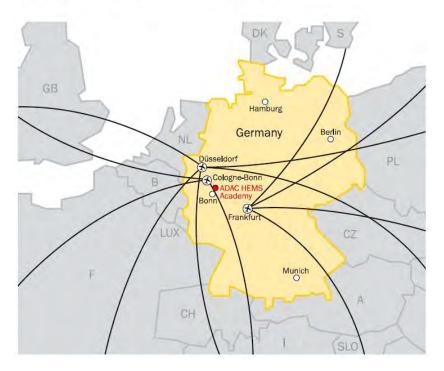
Christoph "SIM"

- Two Full Scale Models 1:1: EC135 and BK117 for training scenarios inside the helicopter
- Including professional patient simulators with bluetooth connection
- "Christoph Sim" incorporates the medical equipment used in air rescue
- Video- and audioinstallation

Shock room

- To train the handover of the patient from the helicopter to the hospital
- Intensive care transport preparation

Anticipating the future


- > 24/7 all-weather operations (new aircraft)
 - > PBN, PIS approaches (vs ILS)
 - IFR rating quo vadis?
- > Aviation regulation (Bureaucracy, Age 60, drones)
- New medical strategies (faster intervention & stabilisation) to reduce therapy-free interval for patients and earlier definitive treatment
- New medical devices for HEMS (ECMO, CT, microwave)

We look forward to welcome you "On Board"!

3 International Airports within less than an hour driving distance: Frankfurt ∞ Cologne-Bonn ∞ Düsseldorf


Where to find us?

Arrival Frankfurt Airport 45 min by Bullit-Train to Siegburg trainstation Transfer by taxi

Arrival Cologne-Bonn Airport 30 min car drive

Arrival Düsseldorf Airport 50 min car drive

Or land "on our doorstep" Hangelar Airfield with your small plane or helicopter

ADAC HEMS Academy

Airfield Bonn-Hangelar Richthofenstrasse 142 D-53757 Sankt Augustin Germany

Dipl.-Bw. Thomas Gassmann

Director Business Development & Sales

- T: +49-2241-93219-22
- F: +49-2241-93219-29
- M: +49-171-5556219
- @: thomas.gassmann@hems-academy.adac.de
- www.hems-academy.de

Thank you very much for your attention

